Viruses are found wherever there is life and have probably existed since living cells first evolved.[30] The origin of viruses is unclear because they do not form fossils, so molecular techniques have been the most useful means of investigating how they arose.[31] These techniques rely on the availability of ancient viral DNA or RNA, but, unfortunately, most of the viruses that have been preserved and stored in laboratories are less than 90 years old.[32][33] There are three main hypotheses that try to explain the origins of viruses:[34][35]
Regressive hypothesis
Viruses may have once been small cells that parasitised larger cells. Over time, genes not required by their parasitism were lost. The bacteria rickettsia and chlamydia are living cells that, like viruses, can reproduce only inside host cells. They lend support to this hypothesis, as their dependence on parasitism is likely to have caused the loss of genes that enabled them to survive outside a cell. This is also called the degeneracy hypothesis.[36][37]
Cellular origin hypothesis
Some viruses may have evolved from bits of DNA or RNA that "escaped" from the genes of a larger organism. The escaped DNA could have come from plasmids (pieces of naked DNA that can move between cells) or transposons (molecules of DNA that replicate and move around to different positions within the genes of the cell).[38] Once called "jumping genes", transposons are examples of mobile genetic elements and could be the origin of some viruses. They were discovered in maize by Barbara McClintock in 1950.[39] This is sometimes called the vagrancy hypothesis.[36][40]
Coevolution hypothesis
Viruses may have evolved from complex molecules of protein and nucleic acid at the same time as cells first appeared on earth and would have been dependent on cellular life for many millions of years. Viroids are molecules of RNA that are not classified as viruses because they lack a protein coat. However, they have characteristics that are common to several viruses and are often called subviral agents.[41] Viroids are important pathogens of plants.[42] They do not code for proteins but interact with the host cell and use the host machinery for their replication.[43] The hepatitis delta virus of humans has an RNA genome similar to viroids but has protein coat derived from hepatitis B virus and cannot produce one of its own. It is therefore a defective virus and cannot replicate without the help of hepatitis B virus.[44] Similarly, the virophage 'sputnik' is dependent on mimivirus, which infects the protozoan Acanthamoeba castellanii.[45] These viruses that are dependent on the presence of other virus species in the host cell are called satellites and may represent evolutionary intermediates of viroids and viruses.[46][47]
Prions are infectious protein molecules that do not contain DNA or RNA.[48] They cause an infection in sheep called scrapie and cattle bovine spongiform encephalopathy ("mad cow" disease). In humans they cause kuru and Creutzfeldt-Jakob disease.[49] They are able to replicate because some proteins can exist in two different shapes and the prion changes the normal shape of a host protein into the prion shape. This starts a chain reaction where each prion protein converts many host proteins into more prions, and these new prions then go on to convert even more protein into prions. Although they are fundamentally different from viruses and viroids, their discovery gives credence to the idea that viruses could have evolved from self-replicating molecules.[50]
Computer analysis of viral and host DNA sequences is giving a better understanding of the evolutionary relationships between different viruses and may help identify the ancestors of modern viruses. To date, such analyses have not helped to decide on which of these hypotheses are correct. However, it seems unlikely that all currently known viruses have a common ancestor and viruses have probably arisen numerous times in the past by one or more mechanisms
Isnin, 22 Mac 2010
origin
history
In 1884, the French microbiologist Charles Chamberland invented a filter (known today as the Chamberland filter or Chamberland-Pasteur filter) with pores smaller than bacteria. Thus, he could pass a solution containing bacteria through the filter and completely remove them from the solution.[11] In 1892, the Russian biologist Dmitry Ivanovsky used this filter to study what is now known as the tobacco mosaic virus. His experiments showed that crushed leaf extracts from infected tobacco plants remain infectious after filtration. Ivanovsky suggested the infection might be caused by a toxin produced by bacteria, but did not pursue the idea.[12] At the time it was thought that all infectious agents could be retained by filters and grown on a nutrient medium—this was part of the germ theory of disease.[2] In 1898, the Dutch microbiologist Martinus Beijerinck repeated the experiments and became convinced that the filtered solution contained a new form of infectious agent.[13] He observed that the agent multiplied only in cells that were dividing, but as his experiments did not show that it was made of particles, he called it a contagium vivum fluidum (soluble living germ) and re-introduced the word virus.[12] Beijerinck maintained that viruses were liquid in nature, a theory later discredited by Wendell Stanley, who proved they were particulate.[12] In the same year, 1899, Friedrich Loeffler and Frosch passed the agent of foot-and-mouth disease (aphthovirus) through a similar filter and ruled out the possibility of a toxin because of the reduced concentration; they concluded that the agent could replicate.[12]
In the early 20th century, the English bacteriologist Frederick Twort discovered a group of viruses that infect bacteria, which are now called bacteriophages[14] (commonly called phages), and the French-Canadian microbiologist Félix d'Herelle described viruses that, when added to bacteria on agar, would produce areas of dead bacteria. He accurately diluted a suspension of these viruses and discovered that the highest dilutions (lowest virus concentrations), rather than killing all the bacteria, formed discrete areas of dead organisms. Counting these areas and multiplying by the dilution factor allowed him to calculate the number of viruses in the original suspension.[15]
By the end of the nineteenth century, viruses were defined in terms of their infectivity, their ability to be filtered, and their requirement for living hosts. Viruses had been grown only in plants and animals. In 1906, Harrison invented a method for growing tissue in lymph, and, in 1913, E. Steinhardt, C. Israeli, and R. A. Lambert used this method to grow vaccinia virus in fragments of guinea pig corneal tissue.[16] In 1928, H. B. Maitland and M. C. Maitland grew vaccinia virus in suspensions of minced hens' kidneys. Their method was not widely adopted until the 1950s, when poliovirus was grown on a large scale for vaccine production.[17]
Another breakthrough came in 1931, when the American pathologist Ernest William Goodpasture grew influenza and several other viruses in fertilised chickens' eggs.[18] In 1949, John F. Enders, Thomas Weller, and Frederick Robbins grew polio virus in cultured human embryo cells, the first virus to be grown without using solid animal tissue or eggs. This work enabled Jonas Salk to make an effective polio vaccine.[19]
The first images of viruses were obtained upon the invention of electron microscopy in 1931 by the German engineers Ernst Ruska and Max Knoll.[20] In 1935, American biochemist and virologist Wendell Stanley examined the tobacco mosaic virus and found it was mostly made of protein.[21] A short time later, this virus was separated into protein and RNA parts.[22] The tobacco mosaic virus was the first to be crystallised and its structure could therefore be elucidated in detail. The first X-ray diffraction pictures of the crystallised virus were obtained by Bernal and Fankuchen in 1941. On the basis of her pictures, Rosalind Franklin discovered the full DNA structure of the virus in 1955.[23] In the same year, Heinz Fraenkel-Conrat and Robley Williams showed that purified tobacco mosaic virus RNA and its coat protein can assemble by themselves to form functional viruses, suggesting that this simple mechanism was probably the means through which viruses were created within their host cells.[24]
The second half of the twentieth century was the golden age of virus discovery and most of the 2,000 recognised species of animal, plant, and bacterial viruses were discovered during these years.[25][26] In 1957, equine arterivirus and the cause of Bovine virus diarrhea (a pestivirus) were discovered. In 1963, the hepatitis B virus was discovered by Baruch Blumberg,[27] and in 1965, Howard Temin described the first retrovirus. Reverse transcriptase, the key enzyme that retroviruses use to translate their RNA into DNA, was first described in 1970, independently by Howard Temin and David Baltimore.[28] In 1983 Luc Montagnier's team at the Pasteur Institute in France, first isolated the retrovirus now called HIV.[29]
virus
Unlike prions and viroids, viruses consist of two or three parts: all viruses have genes made from either DNA or RNA, long molecules that carry genetic information; all have a protein coat that protects these genes; and some have an envelope of fat that surrounds them when they are outside a cell. (Viroids do not have a protein coat and prions contain no RNA or DNA.) Viruses vary from simple helical and icosahedral shapes to more complex structures. Most viruses are about one hundred times smaller than an average bacterium. The origins of viruses in the evolutionary history of life are unclear: some may have evolved from plasmids—pieces of DNA that can move between cells—while others may have evolved from bacteria. In evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity.[7]
Viruses spread in many ways; plant viruses are often transmitted from plant to plant by insects that feed on sap, such as aphids, while animal viruses can be carried by blood-sucking insects. These disease-bearing organisms are known as vectors. Influenza viruses are spread by coughing and sneezing. The norovirus and rotavirus, common causes of viral gastroenteritis, are transmitted by the faecal-oral route and are passed from person to person by contact, entering the body in food or water. HIV is one of several viruses transmitted through sexual contact and by exposure to infected blood.
Viral infections in animals provoke an immune response that usually eliminates the infecting virus. Immune responses can also be produced by vaccines, which confer an artificially acquired immunity to the specific viral infection. However, some viruses including those causing HIV and viral hepatitis evade these immune responses and result in chronic infections. Microorganisms also have defences against viral infection, such as restriction modification systems which restrict the growth of viruses. Antibiotics have no effect on viruses, but several antiviral drugs have been developed